NAG Toolbox for MATLAB

g08cg

1 Purpose

g08cg computes the test statistic for the χ^2 goodness-of-fit test for data with a chosen number of class intervals.

2 Syntax

[chisq, p, ndf, eval, chisqi, ifail] = g08cg(ifreq, cb, dist, par,
npest, prob, 'nclass', nclass)

3 Description

The χ^2 goodness-of-fit test performed by g08cg is used to test the null hypothesis that a random sample arises from a specified distribution against the alternative hypothesis that the sample does not arise from the specified distribution.

Given a sample of size n, denoted by x_1, x_2, \ldots, x_n , drawn from a random variable X, and that the data has been grouped into k classes,

$$x \le c_1,$$

 $c_{i-1} < x \le c_i, \quad i = 2, 3, \dots, k-1,$
 $x > c_{k-1}.$

then the χ^2 goodness-of-fit test statistic is defined by

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}},$$

where O_i is the observed frequency of the *i*th class, and E_i is the expected frequency of the *i*th class.

The expected frequencies are computed as

$$E_i = p_i \times n$$
,

where p_i is the probability that X lies in the ith class, that is

$$p_1 = P(X \le c_1),$$

 $p_i = P(c_{i-1} < X \le c_i), \quad i = 2, 3, \dots, k-1,$
 $p_k = P(X > c_{k-1}).$

These probabilities are either taken from a common probability distribution or are supplied by you. The available probability distributions within this function are:

Normal distribution with mean μ , variance σ^2 ;

uniform distribution on the interval [a, b];

exponential distribution with probability density function (pdf) = $\lambda e^{-\lambda x}$;

 χ^2 -distribution with f degrees of freedom; and

gamma distribution with pdf = $\frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$.

You must supply the frequencies and classes. Given a set of data and classes the frequencies may be calculated using g01ae.

[NP3663/21] g08cg.1

g08cg NAG Toolbox Manual

g08cg returns the χ^2 test statistic, χ^2 , together with its degrees of freedom and the upper tail probability from the χ^2 -distribution associated with the test statistic. Note that the use of the χ^2 -distribution as an approximation to the distribution of the test statistic improves as the expected values in each class increase.

4 References

Conover W J 1980 Practical Nonparametric Statistics Wiley

Kendall M G and Stuart A 1973 *The Advanced Theory of Statistics (Volume 2)* (3rd Edition) Griffin Siegel S 1956 *Non-parametric Statistics for the Behavioral Sciences* McGraw–Hill

5 Parameters

5.1 Compulsory Input Parameters

1: **ifreq(nclass) – int32 array**

ifreq(i) must specify the frequency of the ith class, O_i , for i = 1, 2, ..., k.

Constraint: **ifreq** $(i) \ge 0$, for i = 1, 2, ..., k.

2: cb(nclass - 1) - double array

 $\mathbf{cb}(i)$ must specify the upper boundary-value for the *i*th class, for $i = 1, 2, \dots, k - 1$.

Constraint: $\mathbf{cb}(1) < \mathbf{cb}(2) < \cdots < \mathbf{cb}(\mathbf{nclass} - 1)$. For the exponential, gamma and χ^2 -distributions $\mathbf{cb}(1) \ge 0.0$.

3: **dist** – **string**

Indicates for which distribution the test is to be carried out.

dist = 'N'

The Normal distribution is used.

dist = 'U'

The uniform distribution is used.

dist = 'E'

The exponential distribution is used.

dist = 'C'

The χ^2 -distribution is used.

dist = 'G'

The gamma distribution is used.

dist = 'A'

You must supply the class probabilities in the array prob.

Constraint: **dist** = 'N', 'U', 'E', 'C', 'G' or 'A'.

4: par(2) - double array

Must contain the parameters of the distribution which is being tested. If you supply the probabilities (i.e., dist = 'A') the array par is not referenced.

If a Normal distribution is used then $\mathbf{par}(1)$ and $\mathbf{par}(2)$ must contain the mean, μ , and the variance, σ^2 , respectively.

If a uniform distribution is used then par(1) and par(2) must contain the boundaries a and b respectively.

g08cg.2 [NP3663/21]

If an exponential distribution is used then par(1) must contain the parameter λ . par(2) is not used.

If a χ^2 -distribution is used then $\mathbf{par}(1)$ must contain the number of degrees of freedom. $\mathbf{par}(2)$ is not used.

If a gamma distribution is used par(1) and par(2) must contain the parameters α and β respectively.

Constraints:

```
if dist = 'N', par(2) > 0.0; if dist = 'U', par(1) < par(2) and par(1) \le cb(1) and par(2) \ge cb(nclass - 1); if dist = 'E', par(1) > 0.0; if dist = 'C', par(1) > 0.0; if dist = 'G', par(1) > 0.0 and par(2) > 0.0.
```

5: npest – int32 scalar

The number of estimated parameters of the distribution.

Constraint: $0 \le npest < nclass - 1$.

6: **prob**(nclass) – double array

If you are supplying the probability distribution (i.e., $\mathbf{dist} = 'A'$) then $\mathbf{prob}(i)$ must contain the probability that X lies in the ith class.

If $dist \neq 'A'$, prob is not referenced.

Constraint: if **dist** = 'A',
$$\sum_{i=1}^{k} \mathbf{prob}(i) = 1.0$$
, $\mathbf{prob}(i) > 0.0$, for $i = 1, 2, ..., k$.

5.2 Optional Input Parameters

1: nclass – int32 scalar

Default: The dimension of the arrays **ifreq**, **prob**, **eval**, **chisqi**. (An error is raised if these dimensions are not equal.)

k, the number of classes into which the data is divided.

Constraint: $nclass \ge 2$.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: chisq – double scalar

The test statistic, X^2 , for the χ^2 goodness-of-fit test.

2: p - double scalar

The upper tail probability from the χ^2 -distribution associated with the test statistic, X^2 , and the number of degrees of freedom.

3: ndf - int32 scalar

Contains (nclass - 1 - npest), the degrees of freedom associated with the test.

4: eval(nclass) – double array

eval(i) contains the expected frequency for the ith class, E_i , for i = 1, 2, ..., k.

[NP3663/21] g08cg.3

g08cg NAG Toolbox Manual

5: **chisqi(nclass)** – **double array**

chisqi(i) contains the contribution from the ith class to the test statistic, that is, $(O_i - E_i)^2 / E_i$, for i = 1, 2, ..., k.

6: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Note: g08cg may return useful information for one or more of the following detected errors or warnings.

ifail = 1

On entry, nclass < 2.

ifail = 2

On entry, dist is invalid.

ifail = 3

On entry,
$$\mathbf{npest} < 0$$
, or $\mathbf{npest} \ge \mathbf{nclass} - 1$.

ifail = 4

On entry, **ifreq**(i) < 0.0 for some i, for i = 1, 2, ... k.

ifail = 5

On entry, the elements of **cb** are not in ascending order. That is, $\mathbf{cb}(i) \le \mathbf{cb}(i-1)$ for some i, for i = 2, 3, ..., k-1.

ifail = 6

On entry, **dist** = 'E', 'C' or 'G' and **cb**(1) < 0.0. No negative class boundary-values are valid for the exponential, gamma or χ^2 -distributions.

ifail = 7

On entry, the values provided in par are invalid.

ifail = 8

On entry, with
$$\mathbf{dist} = '\mathbf{A}', \ \mathbf{prob}(i) \le 0.0$$
 for some i , for $i = 1, 2, \dots, k$, or $\sum_{i=1}^k \mathbf{prob}(i) \ne 1.0$.

ifail = 9

An expected frequency is equal to zero when the observed frequency was not.

ifail = 10

This is a warning that expected values for certain classes are less than 1.0. This implies that we cannot be confident that the χ^2 -distribution is a good approximation to the distribution of the test statistic.

g08cg.4 [NP3663/21]

ifail = 11

The solution obtained when calculating the probability for a certain class for the gamma or χ^2 -distribution did not converge in 600 iterations. The solution may be an adequate approximation.

7 Accuracy

The computations are believed to be stable.

8 Further Comments

The time taken by g08cg is dependent both on the distribution chosen and on the number of classes, k.

9 Example

```
ifreq = [int32(26);
     int32(16);
     int32(22);
     int32(19);
     int32(17)];
cb = [0.2;
     0.4;
     0.6;
     0.799999999999999];
dist = 'U';
par = [0;
     1];
npest = int32(0);
prob = [0;
     0;
     0;
     4.878438904751203e+199;
     5.495816452771857e+222];
[chisq, p, ndf, eval, chisqi, ifail] = g08cg(ifreq, cb, dist, par, npest,
prob)
chisq =
    3.3000
p =
    0.5089
ndf =
eval =
   20.0000
   20.0000
   20.0000
   20.0000
   20.0000
chisqi =
    1.8000
    0.8000
    0.2000
    0.0500
    0.4500
ifail =
           0
```

[NP3663/21] g08cg.5 (last)